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ABSTRACT
The paper studies model selection through consistency of several Bayes factors for
the Black-Karasinski models with proper informative prior and noninformative prior.
We consider continuous and discrete (both dense and fixed time intervals) observa-
tions of the process.
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1. Introduction

The Ornstein-Uhlenbeck (O-U) process, also called the Vasicek model in finance, is be-
ing extensively used in finance these days as one-factor short term interest rate model
and also as a stochastic volatility model with a positive Levy process driving term, see
Bishwal (2022a). Nonhomogeneous extensions with time varying drift functions of the
O-U process is known as Ho-Lee model (volatility is constant) and Hull-White model
(volatility is time-varying) in finance, see Hull (2015). In the homogeneous case, it is
well known that this simple O-U model shows altogether different behaviors in different
parts of the parameter space, the negative reals, the positive reals and zero. In view of
this, there naturally arises the problem of model selection. We handle this task within
a Bayesian paradigm. Note that the study of the behaviour of Bayes factors for com-
peting dependent models has not been paid much attention yet in finance literature.
This is an alternative approach to classical hypothesis test. The Bayes factor can be
calculated via Girsanov’s formula and approximations. The advantages of Bayes factor
rather than a classical hypothesis test has been widely discussed, see Berger and Sellke
(1987). There is no need to compute the asymptotic distributions of the functionals
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of the process or to compute the conditional distribution given the ancillary statistics.
Liptser and Shiryayev (1978) studied testing of hypotheses of zero versus non-zero
drift of the O-U process. Sequential test for the drift of a Wiener process with smooth
prior was studied in Simons et al. (1989). For the asymptotic distribution approach,
Bernstein-von Mises theorem along with asymptotic behavior of the Bayes estimators
and the rate of convergence for the Ornstein-Uhlenbeck process was studied in Bishwal
(2000, 2001, 2008). Bishwal (2011a) studied simulated Milstein approximation of pos-
terior density of diffusions along with Bernstein-von Mises theorem and properties of
Bayes estimators. Berry-Esseen bounds of approximate Bayes estimators and approxi-
mate maximum a posteriori estimators for the discretely observed Ornstein-Uhlenbeck
process were studied in Bishwal (2021a).

On a stochastic basis (Ω,F , {Ft}t≥0, P ), consider the Ornstein-Uhlenbeck process
satisfying the stochastic differential equation

dXt = θXtdt+ σdWt, t ≥ 0, X0 = ξ

where {Wt}t≥0 is a standard Wiener process adapted to the filtration {Ft}t≥0 and
σ > 0 and θ ∈ R are the unknown parameters. Note that the behaviour of the process
depends on both the initial condition ξ and the parameter space. Classically, it has
been assumed that ξ is either has a normal distribution or a nonzero constant and
θ < 0 which makes the process stationary with Gaussian invariant distribution. If
ξ = 0 is with θ < 0, then the process is asymptotically stationary and ergodic. In the
above two cases the model satisfies the LAN (local asymptotic normality) property.
With ξ a nonzero constant and θ > 0 the process is transient and satisfies the LAMN
(local asymptotic mixed normality) property. With θ = 0, the process is nonstationary
and satisfies the LABF (local asymptotic Brownian functional) property. For all θ ∈ R,
the model satisfies the LABF property, see Bishwal (2018) for the definitions of these
LAN, LAMN and LABF properties.

Logarithmic interest rate Xt = logRt evolves according to the following models
under the hypotheses H0, H1 and H2:

H0 : dXt = θdt+ σdWt, t ≥ 0,

H1 : dXt = −αXtdt+ σdWt, t ≥ 0,

H2 : dXt = {θ − α(Xt − θt)}dt+ σdWt, t ≥ 0.

Here α > 0 is known as the mean reversion speed and θ is known as the mean
reversion level. Under H0, the interest rate Rt is the Randleman-Bartter (R-B) model.
Under H1, the interest rate Rt is the Geometric Ornstein-Uhlnbeck (G-O-U) model.
Under H2, the interest rate Rt is the Black-Karasinski (B-K) model. See Black and
Karasinski (1991) and Hull (2015). The main disadvantage of R-B model is that it
does not capture the mean reversion of the interest rate. For θ = 0, the B-K model
becomes the G-O-U model, for α = 0, the B-K model becomes the R-B model. Recall
that the process Xt under model H0 follows the famous Bachelier model, also known
as arithmetic Brownian motion. Turfus (2019) provided a systematic derivation of an
Arrow-Debrew pricing formula for European option of the B-K model using a Green’s
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function approach. As an inverse problem to pricing, Bishwal (2022b) obtained Berry-
Esseen inequalities of estimators for the fractional Black-Karasinski model of term
structure of interest rates which incorporates long memory.

Let the continuous realization {Xt, 0 ≤ t ≤ T} be denoted by XT
0 . The marginal

belief (marginal law) under the hypothesis Hi is defined as

P T (XT
0 |Hi) =

∫
LT (θ|Hi)p(θ|Hi)dθ, i = 0, 1, 2

where LT (θ|Hi) is the likelihood under Hi and p(θ|Hi) is the prior density under the
hypothesis Hi.

The Bayes factor (Jeffreys (1961)) between two competing models Hi and Hj is
given by the ratio of the marginal beliefs defined as

BFij(X
T
0 ) :=

P T (XT
0 |Hi)

P T (XT
0 |Hj)

, i, j = 0, 1, 2.

First, we consider proper prior and obtain consistency or inconsistency of the mod-
els. We model the drift parameter in the continuous observation case. Then we model
both the drift and the volatility parameters in the discrete observation case. Our ap-
proach to discrete observations is approximating the Bayes factor between competing
continuous models.

The rest of the paper is organized as follows: In section 2, we study consistency
of the Bayes factor for continuous observation. In section 3, we study consistency of
the Bayes factor for discrete observations. In section 4, we study Bayes factor for
Ornstein-Uhlenbeck process with mean reversion. In Section 5, we consider intrinsic
Bayes factors for both simple and mean-reverting Ornstein-Uhlenbeck processes. In
Section 6, we study fractional Bayes factors. Section 7 concludes.

2. Continuous Observation

Let the realization {Xt, 0 ≤ t ≤ T} be denoted by XT
0 . The unown parameter σ

is almost surely determined by the continuous observation of the process. Hence we
assume it to be known and without loss of generality assume σ = 1. We will return to
the inference on σ when we consider discrete observations in the next section. Hence
the only unknown parameter is θ. Let P T

θ be the measure generated on the space
(CT ,BT ) of continuous functions on [0, T ] with the Borel-σ algebra BT under the
supremum norm and let P T

0 be the standard Wiener measure. It is well known that
P T
θ ≪ P T

0 and the Radon-Nikodym derivative (likelihood) under H0 is given by

dP T
θ

dP T
0

(XT
0 ) := LT (θ) = exp

{
θ

∫ T

0
dXt −

θ2

2

∫ T

0
dt

}
,

the Radon-Nikodym derivative (likelihood) under H1 is given by

dP T
α

dP T
0

(XT
0 ) := LT (α) = exp

{
−α
∫ T

0
XtdXt −

α2

2

∫ T

0
X2

t dt

}
,
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the Radon-Nikodym derivative (likelihood) under H2 is given by

dP T
θ,α

dP T
0

(XT
0 ) := LT (θ, α) = exp

{∫ T

0
[θ − α(Xt − θt)]dXt −

1

2

∫ T

0
[θ − α(Xt − θt)]2dt

}
,

see Liptser and Shiryayev (1978). We assume normality of the prior. For the G-O-U
model dXt = θXtdt + σdWt, when θ|Hi ∼ N (γi, τ

2
i ) with known hyperparameters

γi, τi, the marginal beliefs are given by (see Polson and Roberts (1994))

2 logP T (XT
0 |Hi) =

1

1 + τ2i Ai
(τ2i B

2
i + 2γiBi − γ2i Ai) + 2Ci − log(τ2i Ai + 1))

where

Ai =

∫ T

0
X2

t dt, Bi =

∫ T

0
XtdXt −

∫ T

0
Xtdt, Ci = XT − 1

2

∫ T

0
X2

t dt.

Under a normal prior θ ∼ N(γ, τ2), the posterior distribution can be calculated via
Bayes theorem as

θ|XT
0 ∼ N

(∫ T
0 XtdXt + γτ−2∫ T
0 X2

t dt+ τ−2
,

1∫ T
0 X2

t dt+ τ−2

)
.

The marginal beliefs

P T (XT
0 |Hi) =

∫
LT (θ|Hi)p(θ|Hi)dθ, i = 0, 1, 2

can be computed as follows:

P T (XT
0 |Hi) =

exp(Ci)√
2πτi

∫
R
exp

[
− 1

2τ2i

{
θ2τ2i Ai − 2τ2i Bi + (θ − γi)

2
}]
dθ

using the Gisanov likelihood, the normality of the prior and the definitions of
(Ai, Bi, Ci). When θ ∼ N(0, τ2i ), i.e., γi = 0,

2 logP T (XT
0 |Hi) =

τ2i B̃
2
i

1 + τ2i Ãi

− log(1 + τ2i Ãi)

where Ãi = Ai and B̃i =
∫ T
0 XtdXt =

1
2(X

2
T − T ), due to Itô formula. We use quadra-

ture based approximation to estimate Ai (see Bishwal (2006)), in order to obtain
approximate Bayes factor. The Bayes factor can be computed, by noting that under
H0, the dominating measure is the Wiener measure. Hence for the R-B model

2 logBF (XT
0 ) =

(XT −X0)
2 + 2γτ−2(XT −X0)− γ2τ−2T

(T + τ−2)
− log(1 + τ2T ).
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The posterior odds of Hi versus Hj is given by

P (Hi|XT
0 )

P (Hj |XT
0 )

= (1 + τ2T )−1/2 exp

{
(XT −X0)

2 + 2γτ−2(XT −X0)− γ2τ−2T

2(T + τ−2)

}
P (Hi)

P (Hj)

where P (Hi)
P (Hj)

is a priori odds ratio.

For the B-K model, under a normal prior θ ∼ N(γ, τ2), the marginal beliefs are
given by

2 logP T (XT
0 |H2) =

τ2B2
2

1 + τ2A2
− log(1 + τ2A2)

where

σ2A2 = T

(
1 + αT +

α2T 2

3

)
,

σ2B2 = XT −X0 + α

∫ T

0
tdXt + α

∫ T

0
(1 + αtXtdt),

σ2C2 =
−α
2

(X2
T −X2

0 − σ2T )− α2

2

∫ T

0
X2

t dt.

If the Bayes factor BF21 is greater than one, then there is evidence in the data
against the model H1 in favor of model H2. One can also access the probability
of mean reversion. Suppose that we specify a priori odds O = P (H2)/P (H0) of
mean reversion versus no mean reversion. Typically O = 1. After the data has been
collected, these odds can be updated by the Bayes factor to posterior odds. The
probability of mean reversion is given by P (H2|Data) = BF/O +BF .

Consistency: Under the true probability distribution, consistency property of Bayes
factor refers to stochastic convergence of BF12, under the true probability distribution,
BF21 → ∞ if H2 is the best model, BF12 → 0 if H2 is the best model. The following
proposition shows consistency of Bayes factor.

Coherency: If Hi, Hj and Hk are three models under consideration, models are said
to be coherent if Bij = 1/Bji and Bij/Bkj = Bik.

Proposition 2.1 Suppose that under H0, H1, and H2, θ ∼ N (γ, τ2) and under H1,
and H2 α ∼ Exponential (β) with known hyperparameters γ, τ, β. Then
(a) BF10 → ∞ a.s. as T → ∞.
(b) BF20 → ∞ a.s. as T → ∞.
(c) BF21 → ∞ a.s. as T → ∞.
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3. Discrete Observations

In practice, observations are always discrete, though the model is continuous. Let the
process {Xt} be observed at 0 = t0 < t1 < t2 < . . . < tn. Denote ∆ := ti−ti−1, 1 ≤ i ≤
n. Note that ∆ could be random having some prior distribution, see Bishwal (2010).
However, we will not consider random sampling in this paper. In the following, DBF
denotes Bayes factor based on discrete observations.

We will consider two types of equally spaced deterministic sampling : ∆ fixed (low
frequency sampling) and ∆ → 0 as n→ ∞ (high frequency sampling).

3.1. Fixed-∆ case

In the stationary case, the O-U process is a nonlinearly parametrized autoregressive
process (AR(1) model) having the representation

Xti = exp(θ∆)Xti−1
+ ϵti−1

, i ≥ 1

where ϵti−1
=
∫ ti
ti−1

e(ti−s)dWs, i ≥ 1, which is N (0, ψ(θ)) where ψ(θ) := e2θ∆−1
2θ , see

Bishwal (2011b).
Thus the process has a Gaussian density and the likelihood is given by

Ln(θ) = −n
2
log 2πψ(θ)− 1

2

n∑
i=1

(
Xti − exp(θ∆)Xti−1

)2
ψ(θ)

.

The following proposition gives the consistency of the discrete Bayes factors.

Proposition 3.1 Suppose that under H0, H1, and H2, θ ∼ N (γ, τ2) and under H1,
and H2 α ∼ Exponential (β) with known hyperparameters. Then with the likelihood
Ln(θ), we have
(a) DBF10 −BF10 = OP (n

−1/2).
(b) DBF20 −BF20 = OP (n

−1/2).
(c) DBF21 −BF21 = OP (n

−1/2).

Proposition 3.2 Suppose that under H0, H1, and H2 θ ∼ N (γ, τ2), under H1, and
H2 α ∼ Exponential (β) with known hyperparameters. Then with the likelihood Ln(θ),
we have
(a) DBF10 → ∞ a.s. as n→ ∞.
(b) DBF20 → ∞ a.s. as n→ ∞.
(c) DBF21 → ∞ a.s. as n→ ∞.

3.2. Small-∆ case

Here we assume ∆ = ∆n = T
n . Also

T
n → 0 as T → ∞ and n → ∞. For the G-O-U

model, taking an Euler type approximation of the continuous Girsanov likelihood, we
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obtain an approximate likelihood,

Ln,T,1(θ) = exp

(
n∑

i=1

Xti−1
(Xti −Xti−1

)− 1

2
X2

ti−1
(ti − ti−1)

)
.

Using Itô formula and applying the rectangular approximation in continuous Girsanov
likelihood which is equivalent to Stratonovich approximation), we obtain another ap-
proximate likelihood:

Ln,T,2(θ) = exp

(
1

2
(X2

T −X2
0 − T )− 1

2
X2

ti−1
(ti − ti−1)

)
.

Based on contrast function approach, we consider the contrast

Ln,T,3(θ) = exp

(
−T
2
− 1

2
X2

ti−1
(ti − ti−1)

)
.

For the B-K nonhomegeneous mean reversion model, the first order Euler type
approximations are:

∫ T

0
(1 + αt)dXt ≈

n∑
i=1

(1 + αti−1)(Xti −Xti−1
),

∫ T

0
X2

t dt ≈
n∑

i=1

X2
ti−1

(ti − ti−1).

The second order Stratonovich type approximations (see Bishwal (2021b)) are:

∫ T

0
(1 + αt)dXt ≈

n∑
i=1

(1 +
α

2
(ti−1 + ti))(Xti −Xti−1

),

∫ T

0
X2

t dt ≈
1

2

n∑
i=1

(X2
ti +X2

ti−1
)(ti − ti−1).

We first obtain the rate of convergence of approximate Bayes factor (ABF) to the
continuous time Bayes factors for fixed T . This measures the loss of information due to
a particular discretization. We will show that the rates of consistency of the ABF using
Ln,T,2 and Ln,T,3 are faster than the rate using Ln,T,1. Let ABFk, k = 1, 2, 3 denote
approximate Bayes factor based on the approximate likelihoods Ln,T,k, k = 1, 2, 3
respectively. The proofs depend on the calculations in Bishwal (2021a). We omit the
details.

Proposition 3.3 Suppose that under H0, H1, and H2 θ ∼ N (γ, τ2) and under
H1, and H2 α ∼ Exponential (β) with known hyperparameters. Then with the
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approximate likelihood Ln,T,1, we have

(a) ABF110 −BF10 = OP (∆
1/2).

(b) ABF120 −BF20 = OP (∆
1/2).

(c) ABF121 −BF21 = OP (∆
1/2).

Proposition 3.4 Suppose that under H0, H1, and H2, θ ∼ N (γ, τ2) and under H1,
andH2 α ∼ Exponential (β) with known hyperparameters. Then with the approximate
likelihood Ln,T,1, we have
(a) ABF110 → ∞ a.s. as T → ∞ and ∆ → 0.
(b) ABF120 → ∞ a.s. as T → ∞ and ∆ → 0.
(c) ABF121 → ∞ a.s. as T → ∞ and ∆ → 0.

Proposition 3.5 Suppose that under H0, H1, and H2, θ ∼ N (γ, τ2) and under
H1, and H2 α ∼ Exponential (β) with known hyperparameters. Then with the
approximate likelihood Ln,T,2, we have
(a) ABF210 −BF10 = OP (∆).
(b) ABF220 −BF20 = OP (∆).
(b) ABF221 −BF21 = OP (∆).

This shows that ABF2 converges to BF faster than that ABF1 converges to BF.

Proposition 3.6 Suppose that under H0, H1, and H2, θ ∼ N (γ, τ2) and under
H1, and H2 α ∼ Exponential (β) with known hyperparameters. Then with the
approximate likelihood Ln,T,2, we have
(a) ABF210 → ∞ a.s. as T → ∞ and ∆ → 0.
(b) ABF220 → ∞ a.s. as T → ∞ and ∆ → 0.
(c) ABF221 → ∞ a.s. as T → ∞ and ∆ → 0.

Proposition 3.7 Suppose that under H0, H1, and H2, θ ∼ N (γ, τ2) and under
H1, and H2 α ∼ Exponential (β) with known hyperparameters. Then with the
approximate likelihood Ln,T,3, we have
(a) ABF310 −BF10 = OP (∆).
(b) ABF320 −BF20 = OP (∆).
(b) ABF321 −BF21 = OP (∆).

This shows that ABF3 converges to BF faster than that ABF1 converges to BF.
Another advantage is that the estimators based on Ln,T,3 are asymptotically efficient
while ordinary least squares estimator is inefficient, see Bishwal (2008) and Tanaka
(2013).

Proposition 3.8 Suppose that under H0, H1, and H2, θ ∼ N (γ, τ2) and under
H1, and H2 α ∼ Exponential (β) with known hyperparameters. Then with the
approximate likelihood Ln,T,3, we have

(a) ABF310 → ∞ a.s. as T → ∞ and ∆ → 0.
(b) ABF320 → ∞ a.s. as T → ∞ and ∆ → 0.
(c) ABF321 → ∞ a.s. as T → ∞ and ∆ → 0.
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4. Ornstein-Uhlenbeck Process with Mean Reversion

First consider the model hypotheses:

H0 : dXt = θXtdt+ σdWt, θ = 0,

H1 : dXt = θXtdt+ σdWt, θ < 0,

H2 : dXt = θXtdt+ σdWt, θ > 0.

Note that under H0, the model satisfies LAN condition, under H1, the model satis-
fies LAMN condition and under H2, the model satisfies LABF condition. The model
satisfies LAQ for all θ. This is in contrast to the Black-Scholes model, where the model
is LAN for all hypotheses. This provides the Ornstein-Uhlenbeck model more flexibility
for modelling in finance.

Consider the mean reverting Ornstein-Uhlenbeck process, also known as Vasicek
model in finance,

dXt = (µ+ θXt)dt+ σdWt, X0 = ξ

Here θ is the mean reversion speed and µ is the mean reversion level and σ > 0 is the
volatility.

First one can consider proper prior and obtain consistency or inconsistency among
the LAN, LAMN and LABF models.

Our model hypotheses are:

M0 : dXt = (µ+ θXt)dt+ σdWt, µ > 0, θ < 0,

M1 : dXt = (µ+ θXt)dt+ σdWt, µ < 0, θ < 0,

M2 : dXt = (µ+ θXt)dt+ σdWt, µ = 0, θ < 0,

M3 : dXt = (µ+ θXt)dt+ σdWt, µ > 0, θ > 0,

M4 : dXt = (µ+ θXt)dt+ σdWt, µ < 0, θ > 0,

M5 : dXt = (µ+ θXt)dt+ σdWt, µ = 0, θ > 0,

M6 : dXt = (µ+ θXt)dt+ σdWt, µ > 0, θ = 0,

M7 : dXt = (µ+ θXt)dt+ σdWt, µ < 0, θ = 0,

9
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M8 : dXt = (µ+ θXt)dt+ σdWt, µ = 0, θ = 0.

The model is also known as Vasicek model in finance literature where µ is the
level of mean reversion and θ is the speed of mean reversion. The model is used
for modeling interest rate and bond pricing. One can obtain BF and ABF for these
models similar to the previous sections.

5. Intrinsic Bayes Factors

The intrinsic Bayes factor (IBF) between competing models Hi and Hj is defined as

IBFij := BFij · CFji, i, j = 1, 2

where CFji is a correction factor, see Berger and Pericchi (1996).

IBF are of two types: Arithmetic IBF (AIBF) and Geometric IBF (GIBF) which
are given by

AIBFij := BFN
ij · 1

K

K∑
k=1

BFN
ji (X(tk)), i, j = 1, 2,

GIBFij := BFN
ij ·

(
K∏
k=1

BFN
ji (X(tk))

)
, i, j = 1, 2

where X(tk), k = 1, 2. . . . ,K is the minimal training sample. Obviously, due to the
inequality between geometric mean and arithmetic mean,

GIBFij ≤ AIBFij .

IBF can be calculated for B-K model.

6. Fractional Bayes Factors

The fractional Bayes factor (FBF) is defined as

FBFij :=
mi

mj
·
m

( 1

n
)

j

m
( 1

n
)

i

10
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where

m
(r)
i =

∫
L
(r)
i (θ)pi(θ)dθ, 0 ≤ r ≤ 1,

and mi = m
(1)
i is the marginal density using the full likelihood Li(θ). The fractional

Bayes factor uses a 1
n -th fraction of the full likelihood. FBF can be calculated for

B-K model. Using the three approximations of the full likelihood, one can calculate
approximate fractional Bayes factor (AFBF).

7. Concluding Remarks

We studied consistency and discretization error rate of Bayes factor for Black-
Karasinski model which help model selection. This approach to model selection has
not yet been paid much attention in the financial literature earlier. This opens up
the gateway to model selection for other financial models. It would be interesting to
calculate approximate fractional Bayes factor (AFBF) for fractional Black-Karasinski
model of Bishwal (2022b).
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